Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

Содержание

Определение, что такое разрядные слагаемые с примерами разряда и класса в математике – Учёба

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

04.11.2019

В начальных классах дети изучают «Разряды и классы чисел», однако эта тема вызывает много вопросов у родителей.

В этой статье Вы сможете «освежить» свои знания и объяснить ребенку эту тему.

Числа и цифры

ЧИСЛА — это единицы счёта. С помощью чисел можно сосчитать количество предметов и определить различные величины (длину, ширину, высоту и т. д.).
Для записи чисел используются специальные знаки — ЦИФРЫ.
Цифр десять: 1 2 3 4 5 6 7 8 9 0

Натуральные числа

НАТУРАЛЬНЫЕ ЧИСЛА — это числа, которые используются при счёте. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …, 1 — самое маленькое число, а самого большого числа не существует.

Число 0(нуль) обозначает отсутствие предмета.  Нуль НЕ является натуральным числом.

Разряды и классы  натуральных чисел

Для записи чисел используется ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ. В десятичной системе счисления пользуются единицами, десятками единиц, десятками десятков — сотнями и т. д.
Каждая новая единица счёта больше предыдущей ровно в 10 раз:

Десятичная система счисления — позиционная. В этой системе счисления значение каждой цифры в записи числа зависит от её позиции (места).

Позиция (место) цифры в записи числа называется РАЗРЯДОМ. Самый младший разряд — ЕДИНИЦЫ. Затем следуют ДЕСЯТКИ, СОТНИ, ТЫСЯЧИ и т. д.

Каждые три разряда натуральных чисел образуют КЛАСС.

Плакат «Сделай уроки сам!» 3-4 класс  https://делайурокисам.рф

Основной вопрос, который родители часто задают: зачем ребенку эти знания? Ответ на этот вопрос очень простой — после изучения этого материала, дети переходят к таким темам как сложение и вычитание в столбик, где обязательно необходимо знать разряды числа, чтобы правильно вычислить примеры.

И если ребенок не освоит эту тему, тогда он не сможет правильно решать в столбик.

Сложение столбиком

    А) Складываем единицы: 4 + 3 = 7.           Записываем под единицами.      Б) Складываем десятки: 4 + 3 = 7.            Записываем под десятками.      В) Складываем сотни: 4 + 3 = 7.            Записываем под сотнями.

                                                 Ответ: 777

Вычитание столбиком

        А) Вычитаем единицы: 9 – 3 = 6.               Записываем под единицами.         Б) Вычитаем десятки: 0 меньше,

             чем 2, занимаем в сотнях (тысячах).

            10 – 2 = 8. Записываем под десятками.                                            В) Вычитаем сотни: 9 – 4 = 5.                                                 Записываем под сотнями.

                                                Ответ: 586

По данным исследования, дети, которые едят питательные и здоровые завтраки, достигают лучших результатов в обучении. Не знаете, что приготовить своему ребенку на завтрак? Смотрите 5 рецептов здорового завтрака для школьника.Читать далее

нет комментариев

В статье рассказывается о том, чем можно занять ребенка в дороге.Читать далее

нет комментариев

В статье рассказывается о том, как именно должны относиться родители к выполнению домашних уроков ребенка, что им следует делать для того чтобы был заметен прогресс, подробно описаны рекомендации.Читать далее

нет комментариев

В статье рассказывается о том, как правильно научить ребенка тратить свои деньги, что для этого следует делать.Читать далее

нет комментариев

А как часто детские вопросы загоняют в угол старших? В этой статье вы можете найти ответы на детские вопросы и советы о воспитании самых дорогих вам людей.Читать далее

нет комментариев

Источник:

Разрядные Слагаемые Натуральные слогаемые

Инфоурок › Математика ›Презентации›Разрядные Слагаемые Натуральные слогаемые

Важно! Узнайте, чем закончилась проверка учебного центра «Инфоурок»?

Описание презентации по отдельным слайдам:

1 слайдОписание слайда:

Разрядные слагаемые Выполнила: Перепелкина Карина

2 слайдОписание слайда:

Введение Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых. Например, число 64 состоит из 6 десятков и 4 единиц. 64 = 6 десятков + 4 единицы = 6 • 10 + 4 = 60 + 4

3 слайдОписание слайда:

Цель: Научить представлять многозначные числа в виде суммы разрядных слагаемых.

4 слайдОписание слайда:

Разрядные слагаемые — это сложение чисел с разной разрядностью.  Например, цифры от 1 до 9 — это «единицы», цифры 10,20, 30, ..-«десятки», и т. д.  Соответственно, если суммировать единицы и десятки, то каждое из слагаемых будет разрядным. 

5 слайдОписание слайда:

Разрядные слагаемые данного натурального числа – это такие натуральные числа, в записи которых только одна цифра, отличная от цифры 0; количество которых равно количеству цифр в данном натуральном числе, отличных от цифры 0; записи которых состоят из разного количества знаков; сумма которых равна данному натуральному числу.

6 слайдОписание слайда:

Разложите числа на разрядные слагаемые:  72 813 91 247

7 слайдОписание слайда:

Ответы: 1) 72813=70000+2000+800+10+3 2) 91247=90000+1000+200+40+7

8 слайдОписание слайда:

Решите задачу с помощью разложения на разрядные слагаемые: В одном колхозе было 3500 овец. По сколько овец получиться, если сделать два колхоза. Решите задачу и представьте полученный ответ в виде суммы разрядных слагаемых.

9 слайдОписание слайда:

Ответ: 3500:2=1750(овец) 1750=1000+700+500

10 слайдОписание слайда:

Прочитайте числа: 5115; 8404; 3067; 7698 и запишите то число, в котором будет три разрядных слагаемых.

11 слайдОписание слайда:

Ответ: 8404=8000+400+4

12 слайдОписание слайда:

Вывод:  Каждое разрядное слагаемое является «представителем» своего разряда данного натурального числа.

Общая информация

ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте «Инфоурок».

Пройдя курс Вы получите: — Удостоверение о повышении квалификации; — Подробный план уроков (150 стр.); — Задачник для обучающихся (83 стр.

); — Вводную тетрадь «Знакомство со счетами и правилами»; — БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий; — Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

  • Пройдите дистанционный курс «Ментальная арифметика» на проекте «Инфоурок»!
  • Подать заявку

Источник: https://rozli.ru/literatura/opredelenie-chto-takoe-razryadnye-slagaemye-s-primerami-razryada-i-klassa-v-matematike.html

Сумма разрядных слагаемых натурального числа, в виде суммы разрядных слагаемых, разложить по разрядам число

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

Представленная статья посвящена интересной теме о натуральных числах. Для того, чтобы выполнять некоторые действия, необходимо представлять исходные выражения как сложение нескольких чисел – другим языком, раскладывать числа по разрядам. Обратный процесс также очень важен для решения упражнений и задач.

В данном разделе детально рассмотрим типичные примеры для лучшего усвоения информации. Мы также научимся преобразовывать натуральные числа и записывать их в другом виде.

Каким образом можно разложить число по разрядам?

Исходя из названия статьи, можно сделать вывод, что этот параграф посвящен таким математическим терминам, как «сумма» и «слагаемые». Перед тем, как приступить к изучению данной информации, следует подробно изучить тему, чтобы иметь понятие о натуральных числах.

Приступим к работе и рассмотрим основные понятия о разрядных слагаемых.

Определение 1

Разрядные слагаемые – это определенные числа, которые состоят из нулей и единственной цифры, отличной от нуля. Натуральные числа 5, 10, 400, 200относятся к данной категории, а числа 144, 321, 5 540, 16 441 – не относятся.

Количество разрядных слагаемых у представленного числа равняется тому числу, сколько цифр, отличных от нуля, содержится в записи. Если представить число 61 как сумму разрядных слагаемых, так как 6 и 1 отличаются от 0. Если разложить число 55050 как сумму разрядных слагаемых, то оно представлено как сумма 3 слагаемых. Три пятерки, представленные в записи, отличны от нуля.

Определение 2

Следует помнить, что все разрядные слагаемые числа содержат разное количество знаков в своей записи.

Определение 3

Сумма разрядных слагаемых натурального числа равна этому числу.

Перейдем к понятию разрядных слагаемых.

Определение 4

Разрядные слагаемые– это такие натуральные числа, в записи которых содержится цифра, отличная от нуля. Количество чисел должно быть равно количеству цифр, не равных нулю. Все слагаемые числа могут записываться с различным количеством знаков. Если мы раскладываем число по разрядам, то сумма слагаемых числа всегда будет равна этому числу.

Проанализировав понятие, можно сделать вывод, что однозначные и многозначные числа (полностью состоящие из нулей за исключением первой цифры) нельзя представить в качестве суммы. Это происходит потому, что данные числа сами будут разрядными слагаемыми для каких-то чисел. За исключением данных чисел, все остальные примеры могут раскладываться на слагаемые.

Как раскладывать числа?

Чтобы разложить число как сумму разрядных слагаемых, необходимо вспомнить, что натуральные числа связаны с количеством некоторых предметов. В записи числа разряды зависят от количества единиц, десятков, сотен, тысяч и так далее.

Если вы возьмем, например, число 58, то может отметить, что он отвечает 5 десяткам и 8 единицам. Число 134 400 соответствует 1 сотне тысяч, 3 десяткам тысяч, 4тысячам и 4 сотням. Можно представить эти числа в виде равенств – 50+8=58 и 134 400=100 000+30 000+4 000+400.

В данных примерах мы наглядно увидели, как можно разложить число в виде разрядных слагаемых.

Смотря на этот пример, мы сможем любое натуральное число представить в виде суммы разрядных слагаемых.

Приведем еще один пример. Представим натуральное число 25 в виде суммы разрядных слагаемых. Число 25 соответствует 2 десяткам и 5 единицам, поэтому 25=20+5. А вот сумма 17+8 не является суммой разрядных слагаемых числа 25, так как в ней не может быть двух чисел, состоящих из одинакового количества знаков.

Мы разобрали основные понятия. Разрядные слагаемые получили свое название из-за того, что каждое принадлежит к определенному разряду.

Как найти натуральное число, если известна сумма разрядных слагаемых?

Для того, чтобы разобрать данный пример, проанализируем обратную задачу. Представим, что нам известна сумма разрядных слагаемых. Нам необходимо найти данное натуральное число.

Например, сумма 200+30+8 разложено по разрядам числа 238, а сумма 3 000 000+20 000+2 000+500 соответствует натуральному числу 3 022 500. Таким образом, мы легко можем определить натуральное число, если нам известна его сумма резервных слагаемых.

Еще один способ нахождения натурального числа – это сложение в столбцах разрядных слагаемых. Данный пример не должен вызвать у вас сложности во время выполнения. Поговорим об этом подробнее.

Пример 1

Необходимо определить исходное число, если известна сумма разрядных слагаемых 200 000+40 000+50+5. Перейдем к решению. Необходимо записать числа 200 000, 40 000, 50 и 5 для сложения в столбик:

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу.

Получаем:

Выполнив сложение, мы получим натуральное число 240 055, сумма разрядных слагаемых которого имеет вид 200 000+40 000+50+5.

Поговорим еще об одном моменте. Если мы научимся раскладывать числа и представлять их в виде суммы разрядных слагаемых, то мы также сможем представлять натуральные число в виде суммы слагаемых, не являющихся разрядными.

Пример 2

Разложение по разрядам числа 725 будет представлено как 725=700+20+5, а сумму разрядных слагаемых 700+20+5 можно представить как (700+20)+5=720+5 или 700+(20+5)=700+25, или (700+5)+20=705+20.

Иногда сложные вычисления можно немного упростить. Рассмотрим еще небольшой пример для закрепления информации.

Пример 3

Выполним вычитание чисел 5 677 и 670. Для начала представим число 5677 в виде суммы разрядных слагаемых: 5 677=5 000+600+70+7. Выполнив действие, мы можем сделать вывод, что. сумме (5 000+7)+(600+70)=5 007+670. Тогда 5 677−670=(5 007+670)−670=5 007+(670−670)=5 007+0=5 007.

Опиши задание

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/summa-razrjadnyh-slagaemyh-naturalnogo-chisla/

Разрядные слагаемые – правило и примеры разложения чисел

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

Натуральными называют естественные величины, которые используются для счета (цифры и их комбинации: 1, 2, 3, 4, 5 и так далее), а также для расстановки по очереди (порядковые числительные: первый, второй, третий, четвертый и так далее). В совокупности они образуют так называемый ряд натуральных чисел. Его обозначением служит латинская буква N.

Главной особенностью этого ряда считается его бесконечность. Она обусловлена тем, что самого большого числа не существует. У любой составляющей ряда есть «старшие товарищи» — величины, которые по своему значению больше.

Распределение по категориям

Составляющие ряда натуральных чисел подразделяются на разряды и классы. Каждая из этих категорий неразрывно связана с другими. Разрядная классификация состоит из следующих групп (в скобках приведены слагаемые, соответствующие каждому разряду):

  • единицы (1, 2, …, 9);
  • десятки (10, 20, …, 90);
  • сотни (100, 200, …, 900);
  • тысячи (1000, 2000, …, 9000) и так далее.

Разряд числа — это положение, которое оно занимает в цифровой записи.

Таким образом, любое числовое значение можно представить посредством разрядных слагаемых по математической формуле следующего вида: nnnn = n000 + n00 + n0 + n, где n означает любую цифру от 0 до 9.

Для наглядного примера стоит разбить на составляющие число 4698 = 4000 + 600 + 90 + 8. Получается, что оно состоит из четырех разрядов, отображенных соответствующими составляющими:

  • 4000 (четыре тысячи) — это первое слагаемое;
  • 600 (шесть сотен) — второе;
  • 90 (девять десятков) — третье;
  • 8 (восемь простых единиц) — четвертое.

Разряд первого слагаемого называют высшим. Цифра, которой он обозначается, всегда больше нуля. Количество разрядов числа, как и количество его разрядных составляющих, всегда соответствует количеству в нем цифр, отличных от 0.

Например, число 7052 состоит из трех разрядов, несмотря на свою четырехзначность. Это связано с тем, что в его составе отсутствуют сотни. Его слагаемые — семь тысяч, пять десятков и две простых единицы (7000 + 50 + 2 = 7052).

Разрядные составляющие — это натуральные числа, содержащие только одну цифру, отличную от нуля. Примеры разрядных слагаемых: 7, 30, 200, 4000 и тому подобные. Числа такого вида, как 12, 21, 475, 3500 и так далее, не могут быть отнесены к этой категории. Они подлежат математическому разложению на составляющие.

Название разрядных слагаемых обусловлено принадлежностью каждого из них к определенному разряду.

Тысяча считается единицей четвертого разряда, сотня — единицей третьего разряда, десяток — второго, единица — первого. То есть нумерация разрядов начинается от наименьшей составляющей.

Единицы первого разряда называются простыми, так как они однозначные. Составляющие прочих разрядов относятся к составным.

Каждый разряд состоит из десяти единиц, но обозначаться он может только девятью, так как десятая единица обеспечивает переход на следующий более высокий разряд. Не может быть разрядной составляющей типа десяти сотен — эта единица обозначается как одна тысяча.

Комплектация разрядов

В целях упрощения записи представления числа через разрядные составляющие единицы разрядов принято группировать в классы. В состав каждого из них входит три разряда:

Для удобства между классами разрешается ставить пробел. Особенно это необходимо для представлений очень больших величин (от миллиона), чтобы они не выглядели бесконечным набором цифр, и в процессе их разложения не возникло путаницы. На классы число разбивается строго по три цифры справа налево.

Первый класс — это единицы. Он включает от одного до трех разрядов. Это значит, что к нему относятся все натуральные числа от 1 до 999. Второй класс — это тысячи. В него входят от четырех до шести разрядов. То есть единицы, принадлежащие к этому классу, есть во всех величинах от 1000 и больше. Дальнейшее распределение по классам:

  • третий — миллионы (с седьмого по девятый разряды);
  • четвертый — миллиарды (с десятого по двенадцатый);
  • пятый — триллионы (с тринадцатого по пятнадцатый);
  • шестой — квадриллионы (с шестнадцатого по восемнадцатый);
  • седьмой — квинтиллионы (с девятнадцатого по двадцать первый) и так далее.

Распределение по классовым и разрядным категориям отображено в таблице:

Классы Разряды
Миллиарды
  • сотни млрд;
  • десятки млрд;
  • млрд;
Миллионы
  • сотни млн;
  • десятки млн;
  • млн;
Тысячи
  • сотни тысяч;
  • десятки тысяч;
  • тысячи;
Единицы

Особенности разложения

Чтобы лучше понять, что такое разрядные слагаемые в математике и как их использовать, стоит подробно рассмотреть процесс разложения натуральных величин на эти составляющие. В основе большинства задач с разрядными слагаемыми лежит разложение натурального числа, то есть его представление в виде суммы разрядов через сложение количеств всех разрядных единиц.

Преобразить в сумму разрядных слагаемых можно каждую натуральную величину составного типа, то есть многозначную (двузначную, трехзначную и так далее).

Чтобы разложить число на разрядные слагаемые корректно, необходимо соблюдать основные правила. Первое — нули не учитываются в разрядном составе числа.

Второе — слагаемые записываются в порядке старшинства, то есть от старшего к младшему — вначале тысячи, затем сотни и десятки, последними фиксируются простые единицы.

Разрядный состав можно записать в трех вариантах разбора:

  • базовый — простое сложение: 852768 = 800 000 + 50 000 + 2000 + 700 + 60 + 8;
  • подробный — сложение с умножением единиц разряда на их количество: 852768 = 8*100 000 + 5*10 000 + 2*1000 + 7*100 + 6*10 + 8*1.
  • словесный — текстовая расшифровка: 852768 = восемь сотен тысяч, пять десятков тысяч, две тысячи, семь сотен, шесть десятков, восемь простых единиц.

Вне зависимости от выбранного способа разложить число на составляющие по разрядам не составит особого труда. Конечно, чем больше число, тем выше риск запутаться и совершить ошибку. Упражняться лучше сперва на двузначных числах, а затем постепенно повышать разрядность.

Упражнения для тренировки

Для лучшего усвоения материала стоит разобрать несколько тренировочных упражнений. Несколько примеров, какими бывают математические задания по этой теме:

  • 75 = 70 + 5;
  • 324 = 300 + 20 + 4;
  • 8434 = 8000 + 400 + 30 + 4;
  • 68 486 = 60 000 + 8000 + 400 + 80 + 6;
  • 575 783 = 500 000 + 70 000 + 5000 + 700 + 80 + 3;
  • 8 633 087 = 8 000 000 + 600 000 + 30 000 + 3000 + 80 + 7.

Нередки упражнения с обратным процессом, то есть такие, в которых нужно найти число по его составляющим:

  • 500 + 60 + 5 = 565;
  • 8000 + 300 + 4 = 8304;
  • 900 000 + 50 000 + 7000 + 80 + 2 = 957 082.

Стоит отметить, что не все задачи с разрядными составляющими решаются путем сложения. Многие упражнения содержат прием их вычитания. Но сложными такие задания кажутся только на первый взгляд. Их суть проста. В скобках приводятся составляющие двух чисел — уменьшаемого и вычитаемого. Требуется найти их разность: (500 + 40 + 1) — (400 + 20) = (100 + 20 + 1) = 121.

Процессы разложения чисел по разрядам и обратного сложения имеют огромное значение для решения различных математических задач и упражнений. Очень важно уметь быстро раскладывать числа любой величины по разрядному составу. Это умение поможет в устном счете и оперировании многозначными числами.

Изучение натуральных чисел и разрядного состава входит в базовую программу по математике. Этот материал проходится учащимися в начальных классах школы.

Источник: https://nauka.club/matematika/razryadny%D0%B5-slagaemy%D0%B5.html

Определение, что такое разрядные слагаемые с примерами разряда и класса в математике

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

> Наука > Математика > Разрядные слагаемые в математике

Число — это математическое понятие для количественного описания чего-либо или его части, служит также для сравнения целого и частей, расположения по порядку.

Понятие числа изображается знаками или цифрами в различном сочетании. В настоящее время почти везде используются цифры от 1 до 9 и 0.

Цифры в виде семи латинских букв применения почти не имеют и рассматриваться здесь не будут.[block id=»32″]

  • Натуральные числа
  • Разряды и классы чисел
  • Разряды
  • Классы
[block id=»33″]

Натуральные числа

При счёте: «один, два, три… сорок четыре» или расстановке по очереди: «первый, второй, третий… сорок четвёртый» используются естественные числа, которые называются натуральными. Вся эта совокупность называется «ряд натуральных чисел» и обозначается латинской буквой N и не имеет конца, ведь всегда есть число ещё больше, и са́мого большого просто не существует.

Разряды

единиц

десятков

сотен

Отсюда видно, что разрядом числа является его позиция в цифровой записи, причём любое значение можно представлять через разрядные слагаемые в виде nnn = n00 + n0 + n, где n — любая цифра от 0 до 9.

Один десяток является единицей второго разряда, а одна сотня — третьего. Единицы первого разряда называются простыми, все остальные являются составными.

Для удобства записи и передачи применяется группировка разрядов в классы по три в каждом. Между классами для удобства чтения допускается ставить пробел.

Классы

Первыйединиц, содержит до 3 знаков:

Двести тринадцать содержит в себе следующие разрядные слагаемые: две сотни, один десяток и три простых единиц.

Сорок пять состоит из четырёх десятков и пяти простых единиц.[block id=»3″]

Второйтысяч, от 4 до 6 знаков:

  • 679 812 = 600 000 + 70 000 + 9 000 + 800 +10 + 2.

Эта сумма состоит из следующих разрядных слагаемых:

  1. шестьсот тысяч;
  2. семьдесят тысяч;
  3. девять тысяч;
  4. восемьсот;
  5. десять;
  6. два;
  • 3 456 = 3000 + 400 +50 +6.

Здесь отсутствуют слагаемые выше четвёртого разряда.

Третиймиллионов, от 7 до 9 цифр:

Это число содержит девять разрядных слагаемых:

  1. 800 миллионов;
  2. 80 миллионов;
  3. 7 миллионов;
  4. 200 тысяч;
  5. 10 тысяч;
  6. 3 тысячи;
  7. 6 сотен;
  8. 4 десятка;
  9. 4 единицы;

В этом числе нет слагаемых выше 7 разряда.[block id=»4″]

Четвёртый — миллиардов, от 10 до 12 цифр:

Пятьсот шестьдесят семь миллиардов восемьсот девяносто два миллиона двести тридцать четыре тысячи девятьсот семьдесят шесть.

Разрядные слагаемые 4 класса читаются слева направо:

  1. единицы сотен миллиардов;
  2. единицы десятков миллиардов;
  3. единицы миллиардов;
  4. сотен миллионов;
  5. десятков миллионов;
  6. миллионов;
  7. сотен тысяч;
  8. десятков тысяч;
  9. тысяч;
  10. простые сотни;
  11. простые десятки;
  12. простые единицы.

Нумерация разряда числа производится начиная с меньшего, а чтение — с большего.[block id=»5″]

При отсутствии в числе слагаемых промежуточных значений при записи ставятся нули, при произношении названия отсутствующих разрядов, как и класса единиц не произносится:

Четыреста миллиардов четыре. Здесь не произносятся из-за отсутствия следующие названия разрядов: десятого и одиннадцатого четвёртого класса; девятого, восьмого и седьмого третьего и самого́ третьего класса; также не озвучиваются названия второго класса и его разрядов, а также сотни и десятки единиц.

Пятый — триллионов, от 13 до 15 знаков.

Читается слева:

Четыреста восемьдесят семь триллионов семьсот восемьдесят девять миллиардов шестьсот пятьдесят четыре миллиона четыреста двадцать семь двести сорок один.

Шестой — квадриллионов, 16—18 цифр.

Триста двадцать один квадриллион пятьсот сорок шесть триллионов восемьсот восемнадцать миллиардов четыреста девяносто два миллиона триста девяносто пять тысяч девятьсот пятьдесят три.

Седьмой — квинтиллионов, 19—21 знак.

  • 771 642 962 921 398 634 389.

Семьсот семьдесят один квинтиллион шестьсот сорок два квадриллиона девятьсот шестьдесят два триллиона девятьсот двадцать один миллиард триста девяносто восемь миллионов шестьсот тридцать четыре тысячи триста восемьдесят девять.

Восьмой — секстиллионов, 22—24 цифры.

  • 842 527 342 458 752 468 359 173

Восемьсот сорок два секстиллиона пятьсот двадцать семь квинтиллионов триста сорок два квадриллиона четыреста пятьдесят восемь триллионов семьсот пятьдесят два миллиарда четыреста шестьдесят восемь миллионов триста пятьдесят девять тысяч сто семьдесят три.

Можно просто различать классы по нумерации, к примеру, число 11 класса содержит в себе при написании от 31 до 33 знаков.

Но на практике запись такого количества знаков неудобна и чаще всего приводит к ошибкам. Поэтому при операциях с такими величинами производится сокращение количества нулей путём возведения в степень. Ведь значительно проще написать 10 31, чем приписывать тридцать один ноль к единице.[block id=»6″][block id=»2″] [block id=»10″]

Отзывы и комментарии

Источник: https://obrazovanie.guru/nauka/matematika/razryadnye-slagaemye.html

4 класс. Математика. Чтение и запись многозначных чисел. – Разряды и классы чисел

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

Данный урок поможет получить представление о теме «Чтение многозначных чисел», которая входит в школьный курс математики 4 класса. Учитель расскажет о том, как правильно читать многозначные числа, состоящие из тысяч, и как правильно записывать такие числа при помощи цифр.

 Введение, знакомство с новым классом – классом тысяч

Если пред­ме­тов много, то при счете ис­поль­зу­ют не толь­ко зна­ко­мые вам счет­ные еди­ни­цы: еди­ни­цы, де­сят­ки, сотни – но и более круп­ные, на­при­мер ты­ся­чи. Ты­ся­чи счи­та­ют так же, как и про­стые еди­ни­цы: одна ты­ся­ча, две ты­ся­чи, три ты­ся­чи, че­ты­ре ты­ся­чи и так далее.

Де­сять тысяч – это один де­ся­ток тысяч.

Де­сять де­сят­ков тысяч – это одна сотня тысяч.

Де­сять сотен тысяч – это ты­ся­ча тысяч, или мил­ли­он.

Со­ста­вим таб­ли­цу клас­сов и раз­ря­дов (рис. 1).

Рис. 1. Таб­ли­ца клас­сов и раз­ря­дов

Вы зна­е­те, что еди­ни­цы, де­сят­ки, сотни со­став­ля­ют класс еди­ниц, или пер­вый класс. Еди­ни­цы тысяч, де­сят­ки тысяч и сотни тысяч со­став­ля­ют класс тысяч, или вто­рой класс.

Еще раз по­смот­ри­те на таб­ли­цу: сколь­ко раз­ря­дов в каж­дом клас­се? Про­верь­те: три раз­ря­да. Раз­ря­ды пер­во­го клас­са: еди­ни­цы, де­сят­ки, сотни.

Раз­ря­ды вто­ро­го клас­са: еди­ни­цы тысяч, де­сят­ки тысяч и сотни тысяч.

Чтобы про­чи­тать мно­го­знач­ное число, его раз­би­ва­ют на клас­сы, от­счи­ты­вая спра­ва по три цифры, затем счи­та­ют, сколь­ко еди­ниц каж­до­го клас­са, на­чи­ная с выс­ше­го.

 Пример

2 класс – класс тысяч1 класс – класс еди­ниц
Сотни тысячДе­сят­ки тысячЕди­ни­цы тысячСотниДе­сят­киЕди­ни­цы
372000
145312
528609
60500
7004

1. 

Три нуля в за­пи­си по­ка­зы­ва­ют от­сут­ствие еди­ниц пер­во­го клас­са. На­зва­ние клас­са еди­ниц не про­из­но­сит­ся. Чи­та­ем число с выс­ше­го клас­са: «три­ста семь­де­сят две ты­ся­чи».

2. 

В этом числе мы видим 145 еди­ниц вто­ро­го клас­са и 312 еди­ниц пер­во­го клас­са. Чи­та­ем число с выс­ше­го клас­са: «сто сорок пять тысяч три­ста две­на­дцать».

3. 

В этом числе 528 еди­ниц вто­ро­го клас­са и 609 еди­ниц пер­во­го клас­са. Чи­та­ем число: «пять­сот два­дцать во­семь тысяч шесть­сот де­сять».

4. 

В дан­ном числе 60 еди­ниц вто­ро­го клас­са и 500 еди­ниц пер­во­го клас­са. Это «ше­сть­де­сят тысяч пять­сот».

5. 

В по­след­нем числе 7 еди­ниц вто­ро­го клас­са и 4 еди­ни­цы пер­во­го клас­са. Число «семь тысяч че­ты­ре».

 Задание 1

Раз­бей­те число на клас­сы. Ска­жи­те, сколь­ко в нем еди­ниц каж­до­го клас­са.

От­счи­та­ем спра­ва у каж­до­го числа три цифры.

1. 

В числе 5 еди­ниц вто­ро­го клас­са и 400 еди­ниц пер­во­го клас­са. Чи­та­ем: «пять тысяч че­ты­ре­ста».

2. 

В числе 5 еди­ниц вто­ро­го клас­са и 432 еди­ни­цы пер­во­го клас­са. Чи­та­ем: «пять тысяч че­ты­ре­ста трид­цать два».

3.

В числе 61 еди­ни­ца вто­ро­го клас­са и 209 еди­ниц пер­во­го клас­са. Чи­та­ем: «ше­сть­де­сят одна ты­ся­ча две­сти де­вять».

4. 

В числе 61 еди­ни­ца вто­ро­го клас­са и 290 еди­ниц пер­во­го клас­са. Чи­та­ем: «ше­сть­де­сят одна ты­ся­ча две­сти де­вя­но­сто».

5. 

В числе 500 еди­ниц вто­ро­го клас­са и 500 еди­ниц пер­во­го клас­са. Чи­та­ем: «пять­сот тысяч пять­сот».

6. 

В числе 500 еди­ниц вто­ро­го клас­са и 5 еди­ниц пер­во­го клас­са. Чи­та­ем: «пять­сот тысяч пять».

 Задание 2

За­пи­ши­те циф­ра­ми числа:

1. Сто во­семь тысяч три­ста де­вять

2. Трид­цать тысяч семь­сот де­вять

3. Во­семь тысяч шесть­сот

Ре­ше­ние

Мно­го­знач­ные числа за­пи­сы­ва­ют по клас­сам, на­чи­ная с выс­ше­го. Чтобы за­пи­сать циф­ра­ми число, на­при­мер «сто во­семь тысяч три­ста де­вять», сна­ча­ла за­пи­сы­ва­ют, сколь­ко всего еди­ниц вто­ро­го, выс­ше­го, клас­са в числе – 108, потом за­пи­сы­ва­ют, сколь­ко всего еди­ниц пер­во­го клас­са в числе.

Для числа «трид­цать тысяч семь­сот семь­де­сят» за­пи­шем ко­ли­че­ство еди­ниц вто­ро­го выс­ше­го клас­са в числе, их трид­цать, и ко­ли­че­ство еди­ниц пер­во­го клас­са в числе, семь­сот семь­де­сят.

В числе «во­семь тысяч шесть­сот» 8 еди­ниц вто­ро­го клас­са и шесть­сот еди­ниц пер­во­го клас­са.

2 класс – класс тысяч1 класс – класс еди­ниц
Сотни тысячДе­сят­ки тысячЕди­ни­цы тысячСотниДе­сят­киЕди­ни­цы
108309
30770
8600

 Задание 3

Про­чи­тай­те по-раз­но­му числа: 3754, 2900, 3970.

Ре­ше­ние

3754. Это число можно про­чи­тать по-раз­но­му:

А) 3 тыс. 754 ед.

На­зва­ние клас­са еди­ниц обыч­но не про­из­но­сит­ся, по­это­му про­чи­та­ем так: три ты­ся­чи семь­сот пять­де­сят че­ты­ре.

Б) 3 тыс. 7 сот. 5 дес. 4 ед.

Мы на­зва­ли ко­ли­че­ство еди­ниц каж­до­го раз­ря­да.

В) 37 сот. 5 дес. 4 ед.

Г) 37 сот. 54 ед.

Д) 375 дес. 4 ед.

Е) 3 тыс. 75 дес. 4 ед.

2. 2900.

А) 2 тыс. 9 сот.

Б) 2 тыс. 90 дес.

В) 29 сот.

Г) 290 дес. 

3) 3970.

А) 3 тыс. 9 сот. 7 дес.

Б) 3 тыс. 97 дес.

В) 3 тыс. 9 сот. 70 ед.

Г) 39 сот. 7 дес.

Д) 39 сот. 70 ед.

Е) 397 дес.

 Свойство

Число, в ко­то­ром есть еди­ни­цы раз­ных раз­ря­дов, можно за­ме­нить сум­мой раз­ряд­ных сла­га­е­мых.

 Задание 4

За­ме­ни­те сум­мой раз­ряд­ных сла­га­е­мых числа:

1903

1903: 1 тыс. 9 сот. 3 ед.

407 020

407 020: 4 сот. тыс. 0 дес. тыс. 7 ед. тыс. 0 сот. 2 дес. 0 ед.

300 206

300 206: 3 сот. тыс. 0 дес. тыс. 0 ед. тыс. 2 сот. 0 дес. 6 ед.

164 800

164 800: 1 сот. тыс. 6 дес. тыс. 4 ед. тыс. 8 сот. 0 дес. 0 ед.

За­ме­ча­ние: если в раз­ря­де стоит ноль, его можно не пи­сать, так как при при­бав­ле­нии нуля по­лу­ча­ет­ся то же число.

Если натуральное число состоит из одного знака – одной цифры, то его называют однозначным, например, числа 3, 5, 9 – однозначные.

сли число состоит из двух знаков – двух цифр, то его называют двузначным. Например, числа 10, 23, 75  – двузначные.

Так же по числу знаков в данном числе дают названия и другим числам. Например: 145, 809 – это трехзначные числа.

Существуют четырехзначные, пятизначные числа и так далее.

Двузначные, трехзначные и так далее числа называют многозначными.

Для чтения многозначное натуральное число разбивают справа налево на группы по три цифры в каждом (самая левая группа может состоять из одной или двух цифр). Эти группы называют классами. Каждая из трех цифр класса обозначает разряд: разряд единиц, разряд десятков, разряд сотен.

Классификация начинается справа. Три первые цифры справа составляют класс единиц, три следующие – класс тысяч, далее идет класс миллионов, затем – миллиардов. (см. Рис.). Так как ряд натуральных чисел бесконечен, то за миллиардами идут триллионы, за триллионами — триллиарды и т.д.

Миллион – это тысяча тысяч, его записывают с помощью единицы и шести нулей.

Миллиард – это тысяча миллионов. Его записывают с помощью единицы и 9 нулей. 

Как же правильно прочитать многозначное число? Начинают читать многозначное число слева направо, по очереди называют число единиц каждого класса и добавляют название класса. При этом название класса единиц не называют, как и класса, в котором все три цифры — нули.

Например, вот это число (42 135 308) разбивают на классы так: оно имеет 308 единиц, 135 единиц в классе тысяч, 42 единицы в классе миллионов. Поэтому читают его так: 42 миллиона 135 тысяч 308.

Любое натуральное число можно представить в виде суммы разрядных единиц.

Например:

32 537 = 30 000 + 2 000 + 500 + 30 + 7

Таким образом, в этом уроке Вы познакомились с понятием натурального числа и натурального ряда, научились читать и классифицировать натуральные многозначные числа, а также раскладывать их по разрядам.

Источник конспекта:: http://interneturok.ru/ru/school/matematika/4-klass/tema-3/chtenie-mnogoznachnyh-chisel?konspekt

http://znaika.ru/catalog/5-klass/matematika/Naturalnye-chisla.-Chtenie-i-zapis

Источник видео: http://www..com/watch?v=frHwo0rvmvM

Источник: https://www.kursoteka.ru/course/4119/lesson/13826/unit/33595

Сумма разрядных слагаемых онлайн. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

Разряды счётных единиц. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых

2.8 Трёхзначные числа

1. Страшила записал некоторые числа в виде суммы. На какие группы можно разбить эти выражения? Какие числа записаны в виде суммы разрядных слагаемых?

Выражения можно разбить на две группы: «Суммы разрядных слагаемых» и «Обычные суммы».

«Суммы разрядных слагаемых»:

600 + 9

700 + 20 + 2

400 + 10

«Обычные суммы»:

259 + 1

340 + 1

200 + 52

Запишите в виде суммы разрядных слагаемых числа: 205, 360, 415.

205 = 200 + 5;

360 = 300 + 60;

415 = 400 + 10 + 5.

2. Прочитайте числа: 410, 700, 420, 267, 807, 268, 1 000.

410 — четыреста десять;

700 — семьсот;

420 — четыреста двадцать;

267 — двести шестьдесят семь;

807 — восемьсот семь;

268 — двести шестьдесят восемь;

1000 — одна тысяча.

Запишите их в порядке убывания. Подчеркните цифру в разряде сотен жёлтым цветом, в разряде десятков – зелёным, в разряде единиц – синим.

1000; 807; 700; 420; 410; 268; 267.

Назовите соседние числа для наименьшего из чисел в этом ряду.

Наименьшее число — 267. Соседние числа для него: 266 и 268.

3. Вычислите.

260 + 5 = 265 784 — 80 = 704 500 + 99 — 1 = 598

382 — 2 = 380 805 + 90 = 895 640 — 600 + 1 =41

Страшила сказал, что среди значений этих выражений есть числа, которые записываются так: 7 с. 4 ед., 5 с. 9 д. 8 ед., 2 д. 6 с. Прав ли он? Объясните, как записываются числа семьсот четыре и семьсот сорок. Почему они так записываются?

Страшила прав не до конца. Числа 704 и 598 есть, а числа 620 — нет.

704 — 7 с, 0 д, 4 ед;

740 — 7 с, 4 д, 0 ед.

Назовите ряд натуральных чисел от 598 до 610.

598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610.

4. Выразите

а) в миллиметрах: 5 дм, 7 дм 4 см;

б) в метрах: 800 см, 600 см;

в) в дециметрах: 90 см, 320 см;

г) в кубических дециметрах: 1 м³.

а) 5 дм = 500 мм; 7 дм = 700 мм; 4 см = 40 мм.

б) 800 см = 8 м; 600 см = 6 м.

в) 90 см = 9 дм, 320 см = 32 дм.

г) 1 м³ = 1000 дм³.

3. Выберите схему и решите задачи.

а) Гудвин получил 47 писем от доброй волшебницы Виллины и 39 писем от доброй волшебницы Стеллы. Сколько новостей сообщила Гудвину Виллина, если в её письмах на 16 новостей больше, чем в письмах Стеллы, и в каждом письме волшебниц новостей поровну?

Решаем по схеме б).

47 + 39 = 8 (писем) — на столько больше от Виллины.

16: 8 = 2 (новости) — в каждом письме.

2 47 = 94 (новости) — всего сообщила Гудвину Виллина.

Ответ: 94 новости.

б) Длиннобородый солдат Дин Гиор каждое утро достаёт почту из трёх почтовых ящиков. В первом ящике 3 отделения, во втором 6, а в третьем 9. Во всех этих ящиках помещается 90 посылок. Сколько посылок помещается в каждом почтовом ящике, если в каждом отделении ящика посылок помещается поровну?

Решаем по схеме а).

3 + 6 + 9= 18 (отделений) — во всех ящиках.

90: 18 = 5 (посылок) — в одном отделении ящика.

5 3 = 15 (посылок) — в первом ящике.

5 6 = 30 (посылок) — во втором ящике.

5 9 = 45 (посылок) — в третьем ящике.

Ответ: 15, 30, 45 посылок.

Уровень владения приемами устных и письменных вычислений напрямую зависит от усвоения детьми вопросов нумерации чисел. На изучение указанной темы в каждом классе начальной школы отводится определенное количество часов. Как показывает практика, для отработки навыков не всегда бывает достаточно того времени, которое предусмотрено программой.

Понимая всю важность вопроса, опытный учитель обязательно будет включать в каждый урок упражнения, связанные с нумерацией чисел. Кроме того, он учтет виды этих заданий и последовательность их предъявления ученикам.

Требования программы

Для понимания того, к чему необходимо стремиться самому педагогу и его воспитанникам, первый должен четко знать требования, которые выдвигает программа по математике в целом и в вопросах нумерации в частности.

  • Ученик должен уметь образовать любые числа (понимать, как это делается) и называть их – требование, которое относится к устной нумерации.
  • Изучая письменную нумерацию, дети должны научиться не только записывать числа, но и сравнивать их. При этом они опираются на знание поместного значения цифры в записи числа.
  • С понятиями «разряд», «разрядная единица», «разрядное слагаемое» дети знакомятся во втором классе. Начиная с этого же времени термины вводятся в активный словарь школьников. Но учитель употреблял их на уроках математики еще в первом классе, до изучения понятий.
  • Знать названия разрядов, записывать число в виде суммы разрядных слагаемых, использовать на практике такие единицы счета, как десяток, сотня, тысяча, воспроизводить последовательность любого отрезка натурального ряда чисел – это тоже требования программы к знаниям учеников начальной школы.

Как использовать задания

Предлагаемые ниже группы заданий помогут учителю в полной мере сформировать умения, которые в итоге приведут к желаемым результатам в области развития вычислительных навыков учеников.

Упражнения могут использоваться на уроках во время повторения пройденного материала, в момент изучения нового. Их можно предлагать для домашних заданий, во внеклассной работе. На материале упражнений учитель может организовать групповые, фронтальные и индивидуальные формы деятельности.

Многое будет зависеть от арсенала приемов и методов, которыми владеет учитель. Но регулярность использования заданий и последовательность отработки навыков – главные условия, которые приведут к успеху.

Образуем числа

Ниже приведены примеры упражнений, направленных на отработку понимания образования чисел. Их необходимое количество будет зависеть от уровня развития учеников класса.

Называем и записываем числа

  1. Упражнения этого вида включают задания, где требуется назвать числа, представленные геометрической моделью.
  2. Назовите числа, набрав их на полотне: 967, 473, 285, 64, 3985.

    Сколько в них содержится единиц каждого разряда?

3. Прочитайте текст и запишите каждое числительное цифрами: на семи … машинах перевезли одну тысячу пятьсот двенадцать … ящиков с помидорами.

Сколько понадобится таких машин, чтобы перевезти две тысячи восемьсот восемь … таких же ящиков?

4. Запишите числа цифрами. Величины выразите в мелких единицах: 8 сот. 4 ед. = …; 8 м 4 см = …; 4 сот. 9 дес. =…; 4 м 9 дм = …

Читаем и сравниваем числа

1. Прочитайте вслух числа, которые состоят из: 41 дес. 8 ед.; 12 дес.; 8 дес. 8 ед.; 17 дес.

2. Прочитайте числа и подберите к ним соответствующее изображение (на доске в одном столбике записаны различные числа, а в другом – в произвольном порядке изображены модели этих чисел, ученики должны установить их соответствие.)

3. Сравните числа: 416 … 98; 199 … 802; 375 … 474.

4. 35 см … 3 м 6 см; 7 м 9 см … 9 м 3 см

Работаем с разрядными единицами

1. Выразите в разных разрядных единицах: 3 сот. 5 дес. 3 ед. = … сот. … ед. = … дес. … ед.

2. Заполните таблицу:

3. Выпишите числа, где цифра 2 обозначает единицы первого разряда: 92; 502; 299; 263; 623; 872.

4. Запишите трехзначное число, где количество сотен равно трем, а единиц – девяти.

Сумма разрядных слагаемых

Примеры заданий:

  1. Прочитай записи на доске: 480; 700 + 70 + 7; 408; 108; 400 + 8; 777; 100 + 8; 400 + 80. В первом столбике расположи трехзначные числа, сумма разрядных слагаемых должна находиться во втором столбике. Соедини стрелкой сумму с ее значением.
  2. Прочитай числа: 515; 84; 307; 781. Замени суммой разрядных слагаемых.
  3. Запиши пятизначное число, в котором будет три разрядных слагаемых.
  4. Запиши шестизначное число, содержащее одно разрядное слагаемое.

Изучаем многозначные числа

  1. Найдите и подчеркните трехзначные числа: 362, 7; 17; 107; 1001; 64; 204; 008.
  2. Запишите число, у которого 375 единиц первого класса и 79 единиц второго класса. Назовите наибольшее и наименьшее разрядное слагаемое.
  3. Чем схожи и отличаются друг от друга числа каждой пары: 8 и 708; 7 и 707; 12 и 112?

Применяем новую счетную единицу

  1. Прочитайте числа и скажите, сколько десятков в каждом из них: 571; 358; 508; 115.
  2. Сколько сотен содержится в каждом записанном числе?
  3. Разбейте числа на несколько групп, обосновав свой выбор: 10; 510; 940; 137; 860; 86; 832.

Поместное значение цифры

  1. Из цифр 3; 5; 6 составьте все возможные варианты трехзначных чисел.
  2. Прочитайте числа: 6; 16; 260; 600. Какая цифра повторяется в каждом из них? Что она обозначает?
  3. Найдите сходство и отличие, сравнив числа между собой: 520; 526; 506.

Умеем считать быстро и правильно

В задания этого вида должны включаться упражнения, в которых требуется определенное количество чисел расставить в порядке убывания или возрастания. Можно предложить детям восстановить нарушенный порядок следования чисел, вставить пропущенные, убрать лишние числа.

Находим значения числовых выражений

Используя знания нумерации, ученики без затруднений должны находить значения выражений типа: 800 – 400; 500 – 1; 204 + 40. При этом полезно будет постоянно спрашивать детей, что они заметили, выполняя действие, просить назвать их то или иное разрядное слагаемое, обращать их внимание на положение одной и той же цифры в числе и т. д.

Все упражнения разделены на группы для удобства их использования. Каждая из них может быть дополнена учителем по своему усмотрению. Заданиями такого вида очень богата наука математика. Разрядные слагаемые, которые помогают освоить состав любого многозначного числа, должны занять особое место в подборе заданий.

Если данный подход к изучению нумерации чисел и их разрядного состава будет использоваться учителем на протяжении всех четырех лет обучения в начальной школе, то положительный результат обязательно проявится. Дети будут легко и без ошибок выполнять арифметические вычисления любого уровня сложности.

Конспект урока по математике в 1 классе (УМК «Гармония»)

Тема урока: «Сравнение двузначных чисел, представление их в виде суммы разрядных слагаемых»

Цель: создать дидактические условия для совершенствования умения сравнивать двузначные числа (с помощью числовой прямой и знания разрядного состава чисел), а так же формировать умение представлять двузначное число в виде суммы разрядных слагаемых.

Задачи:

Образовательная: совершенствовать навыки сложения и вычитания двузначных чисел вида 80+3, 30+8;

Развивающая: развивать в процессе вычислений познавательную активность, внимание, память, мышление, аккуратность в письме.

Ход урока:

I. Оргмомент.

– Прозвенел, друзья, звонок! Начинается урок!

II. Актуализация знаний. Устный счёт.

1. Числовой ряд.

Назовите последующее число 35, 49, 78;

Назовите предыдущее число 30, 40, 70;

Назовите соседей числа 36, 58, 69;

2. Разрядные слагаемые

На доске запись 56, 14, 52, 54, 12, 16

Прочитайте числа

Сколько в каждом числе десятков и единиц?

На какие группы можно разделить данные числа?

(на две группы по цифре, указывающей на количество десятков: 14, 12, 16, и 56, 52, 54; на три группы по цифре единиц: 12, 52 ; 14, 54 ; 16, 56)

3. Назовите числа у которых:

2 дес. 6 ед.; 5 дес.; 7 дес.2 ед.; 3 дес.9 ед, ; 6 дес.5 ед.; 9дес. ; 6 дес. 6 ед; набольшее двузначное число, наименьшее двузначное число.

III. Введение в тему урока.

а) На доске записаны числа 5, 10, 15

Прочитайте числа. – Установите закономерность в данном ряду чисел. (В данном ряду числа увеличиваются на 5.)

На какие группы можно разбить эти числа? (Однозначные и двузначные; круглые и некруглые.

Подумайте – какое число лишнее и почему? (5 т.к. оно однозначное).

Расскажите все, что знаете об этих числах.

Связаны ли между собой эти числа? Как? Составьте 4 числовых выражения с ними.(2 на сложение и 2 на вычитание)

Какое из этих чисел можно представить в виде суммы разрядных слагаемых?

Сегодня мы будем много выполнять таких заданий. Как вы думаете – чему мы будем продолжать учиться на уроке? (представлять двузначные числа в виде суммы разрядных слагаем

Как вы думаете – для чего мы должны уметь это делать? (чтобы находить значения числовых выражений)

б) – Какие еще действия можно выполнить с двузначными числами? (сравнить их при помощи знаков > или

Способ первый: с опорой на числовую прямую (записана на доске). Так, 10< 15 т. к. при счете 10 называем раньше и наоборот.

Способ второй: с опорой на разрядный состав чисел: сначала обращаем внимание на старший разряд- десятки, затем (если это необходимо) – на единицы.

Таких заданий мы тоже сегодня выполним еще немало. Ребята, чему мы будем еще продолжать учиться на уроке? (сравнивать двузначные числа)

IV. Закрепление изученного.

а) Фронтальная работа по учебнику с.56 №138 (представление чисел в виде суммы разрядных слагаемых), частично выносится на доску.

ФИЗМИНУТКА

1, 2, 3, 4, 5 –

Отдыхать умеем тоже.

Руки за спину положим,

Голову поднимем выше и легко-легко подышим!

б) Работа в парах– сравнение двузначных чисел с. 56 №139

Время ограничивается, с последующей проверкой (выносится на доску, обговариваются разные варианты). Самооценка.

в) Групповая дифференцированная работа (разбиение на группы осуществляется учителем предварительно согласно уровню подготовки обучающихся).

Каждой группе предлагается карточка – на которой 3 вида заданий на сравнение:

Двузначных чисел (80…82 , 73…37, 64….46 и др.),

Двузначного числа и выражения (67- 7…60 , 46…48-1 и др.),

Источник: https://elec-master.ru/counters/summa-razryadnyh-slagaemyh-onlain-mnogoznachnye-chisla-edinicy-razryadov-i.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.